Climate variability

A range of agronomic factors can offset the effects of climatic variability on rainfed maize production in Kenya

  • FAO, IFAD, UNICEF, WFP and WHO. The State of Food Security and Nutrition in the World 2020. FAO, IFAD, UNICEF, WFP and WHO. https://doi.org/10.4060/ca9692en (2020).

  • FAOSTAT, F. FAOSTAT Statistical Database. FAO (2022).

  • Chapman, S. et al. Impact of climate change on crop suitability in sub-Saharan Africa in regional climate models parameterized and allowing convection. About. Res. Lett. 15094086. https://doi.org/10.1088/1748-9326/ab9daf (2020).

    Google Scholar Article Announcements

  • Davis, KF, Downs, S. & Gephart, JA Towards food supply chain resilience to environmental shocks. Nat. Food 2, 54–65. https://doi.org/10.1038/s43016-020-00196-3 (2021).

    Google Scholar article

  • UN-DESA. World Population Prospects 2019: Data Booklet. UN. https://doi.org/10.18356/3e9d869f-en (2019).

  • Suzuki, E. World population will continue to grow and will reach nearly 10 billion by 2050. https://blogs.worldbank.org/opendata/worlds-population-will-continue-grow-and-will-reach-nearly -10-billion-2050 (2019).

  • Harrison, P. (ed.) World Agriculture: Towards 2015/2030: Synthesis Report (Food and Agriculture Organization of the United Nations, 2002).

    Google Scholar

  • Wei, D. & Davis, KF Culturally appropriate changes in staple grain consumption can improve several sustainability outcomes. About. Res. Lett. https://doi.org/10.1088/1748-9326/ac32fc (2021).

    Google Scholar article

  • Mueller, North Dakota et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257. https://doi.org/10.1038/nature11420 (2012).

    ADS CAS PubMed Google Scholar Article

  • van Ittersum, MK et al. Can sub-Saharan Africa feed itself? proc. Natl. Acad. Sci. 11314964. https://doi.org/10.1073/pnas.1610359113 (2016).

    CAS PubMed Article PubMed Central Google Scholar

  • Lowder, SK, Skoet, J. & Raney, T. The number, size, and distribution of farms, smallholdings, and family farms around the world. Dev. 87, 16–29. https://doi.org/10.1016/j.worlddev.2015.10.041 (2016).

    Google Scholar article

  • Ricciardi, V., Mehrabi, Z., Wittman, H., James, D. & Ramankutty, N. Higher yields and more biodiversity on small farms. Nat. Sustain. 4, 651–657. https://doi.org/10.1038/s41893-021-00699-2 (2021).

    Google Scholar article

  • Assefa, BT, Chamberlin, J., Reidsma, P., Silva, JV and van Ittersum, MK Unraveling the variability and causes of smallholder maize yield gaps in Ethiopia. Food Safety 12, 83–103. https://doi.org/10.1007/s12571-019-00981-4 (2020).

    Google Scholar article

  • McCullough, EB Labor Productivity and Employment Gaps in Sub-Saharan Africa. Food policy 67, 133–152. https://doi.org/10.1016/j.foodpol.2016.09.013 (2017).

    PubMed Article PubMed Central Google Scholar

  • Jayne, TS et al. Are medium-sized farms driving agricultural transformation in sub-Saharan Africa? Agric. Econ. 50, 75–95. https://doi.org/10.1111/agec.12535 (2019).

    Google Scholar article

  • Muyanga, M. & Jayne, TS Revisiting the relationship between farm size and productivity based on a relatively wide range of farm sizes: Evidence from Kenya. A m. J. Agr. Econ. 101, 1140–1163. https://doi.org/10.1093/ajae/aaz003 (2019).

    Google Scholar article

  • Slavchevska, V., Doss, CR, de la O Campos, AP & Brunelli, C. Beyond ownership: land rights of women and men in sub-Saharan Africa Oxford Development. Standard. 49, 2–22. https://doi.org/10.1080/13600818.2020.1818714 (2021).

  • Derrick Ngoran, S., Dogah, K. & XiongZhi, X. Assessing the Impacts of Climate Change on Water Resources: The Sub-Saharan Africa Perspective. J.Econ. Sustain. Dev. 6(1), 185-193 (2015).

    Google Scholar

  • Ramirez-Cabral, NYZ, Kumar, L. & Shabani, F. Global alterations in areas suitable for maize production due to climate change and using a mechanistic species distribution model (CLIMEX). Sci. representing seven5910. https://doi.org/10.1038/s41598-017-05804-0 (2017).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • White, E. The impact of climate change on crop yields in sub-Saharan Africa (Scientific Research Editions, 2012).

    Book Google Scholar

  • Falconnier, LARP et al. Modeling the impacts of climate change on maize yields under low nitrogen input conditions in sub-Saharan Africa. Global. Change Biol. 26, 5942–5964. https://doi.org/10.1111/gcb.15261 (2020).

    Google Scholar Article Announcements

  • Dale, A., Fant, C., Strzepek, K., Lickley, M. & Solomon, S. Climate model uncertainty in impact assessments for agriculture: A multi-set maize case study in Sub-Saharan Africa. Earth’s future 5, 337–353. https://doi.org/10.1002/2017EF000539 (2017).

    Google Scholar Article Announcements

  • Talib, MNA, Ahmed, M., Naseer, MM, Slusarczyk, B. & Popp, J. The long-term impacts of temperature and precipitation on agricultural growth in sub-Saharan Africa. Sustainability 13595. https://doi.org/10.3390/su13020595 (2021).

    Google Scholar article

  • Campbell, BM, Thornton, P., Zougmoré, R., van Asten, P. & Lipper, L. Sustainable intensification: what is its role in climate-smart agriculture?. Running. Notice. About. Sustain. 8, 39–43. https://doi.org/10.1016/j.cosust.2014.07.002 (2014).

    Google Scholar article

  • Stuch, B., Alcamo, J. & Schaldach, R. Projected impacts of climate change on mean and year-to-year variability in yield of major smallholder crops in sub-Saharan Africa. Air conditioning Dev. 13, 268–282. https://doi.org/10.1080/17565529.2020.1760771 (2021).

    Google Scholar article

  • Djurfeldt, G. et al. Using panel surveys and remote sensing data to explain maize yield gaps in sub-Saharan Africa. J. Land Use Sci. 13, 344–357. https://doi.org/10.1080/1747423X.2018.1511763 (2018).

    Google Scholar article

  • GYGA. Global Atlas of Yield Spreads. www.yieldgap.org/home (2021).

  • Kihara, J., Tamene, LD, Massawe, P. & Bekunda, M. Agronomic survey to assess crop yield, controlling factors and management implications: a case study from Babati in northern Tanzania. Nutr. cycle Agroecosystem. 102, 5–16. https://doi.org/10.1007/s10705-014-9648-3 (2015).

    Google Scholar article

  • Senthilkumar, K. et al. Quantifying rice yield gaps and their causes in Eastern and Southern Africa. J. Agron. Culture Sci. 206, 478–490. https://doi.org/10.1111/jac.12417 (2020).

    Google Scholar article

  • Sheahan, M., Barrett, CB & Sheahan, MB Understanding the agricultural input landscape in sub-Saharan Africa: recent evidence at the plot, household and community levels. SSRN Scientific Paper, Social Science Research Network, Rochester, NY. https://papers.ssrn.com/abstract=2487612 (2014).

  • Godfray, HCJ et al. Food security: The challenge of feeding 9 billion people. Science 327812. https://doi.org/10.1126/science.1185383 (2010).

    ADS CAS PubMed Google Scholar Article

  • Hassan, RM, Njoroge, K., Njore, M., Otsyula, R. & Laboso, A. Adoption patterns and performance of improved maize in Kenya. Maize Technology Development and Transfer: A GIS Application for Research Planning in Kenya. Cab International 107–136 (1998).

  • Jena, PR, De Groote, H., Nayak, BP & Hittmeyer, A. Trends in fertilizer use and its impact on maize productivity in Kenya: evidence from multiple surveys. Food Safety 1395–111 (2021).

    Google Scholar article

  • Ogada, MJ & Nyangena, W. Complementarity of inorganic fertilizers and improved maize varieties and farmer efficiency in maize production in Kenya. Afr. Rev. Econ. Finance 1176-100 (2019).

    Google Scholar

  • Wainaina, P., Tongruksawattana, S. & Qaim, M. Trade-offs and complementarities in the adoption of improved seeds, fertilizers and natural resource management technologies in Kenya. Agric. Econ. 47351–362 (2016).

    Google Scholar article

  • IFPRI. Spatially disaggregated global statistical data on agricultural production for 2010 version 2.0. International Food Policy Research Institute, Ed., Harvard Dataverse. https://doi.org/10.7910/DVN/PRFF8V (2019).

  • De Groote, H., Marangu, C. & Gitonga, Z. Evolution of agricultural mechanization in Kenya 401–422 (2020).

  • DeFries, R., Mondal, P., Singh, D., Agrawal, I., Fanzo, J., Remans, R. & Wood, S. Synergies and trade-offs for sustainable agriculture: nutritional yields and climate resilience for cereal crops in central India. In 2nd International Conference on World Food Security 44–53. https://doi.org/10.1016/j.gfs.2016.07.001 (2016).

  • Davis, KF, Chhatre, A., Rao, ND, Singh, D. & DeFries, R. Sensitivity of cereal yields to historical climate variability in India. About. Res. Lett. 14064013. https://doi.org/10.1088/1748-9326/ab22db (2019).

    Google Scholar Article Announcements

  • Ong’are Oluoch, K. R Set used in the analysis: Can a range of agronomic factors offset the effects of climate change and variability on rainfed maize production? New evidence from Kenya. https://github.com/KevinOluoch/yieldest (2022).

  • Oluoch, KO Replication data for: Can a range of agronomic factors offset the effects of climate change and variability on rainfed maize production? New evidence from Kenya. Harvard Dataverse. https://doi.org/10.7910/DVN/UIWQQH (2022)

  • Makini, F., Mose, L., Kamau, G., Wawire, N., Salasya, B., Mulinge, W., Makelo, M. & Thuranira, E. Mechanization and skills development for productivity growth , Employment and Value Addition: Perspectives from KENYA.