Climate variability

Climate variability rather than overcrowding causes recent large-scale changes in Tibetan pasture cover


  • Balmford, A. et al. Economic reasons for the conservation of wild nature. Sciences 297, 950-953 (2002).

    CASE
    ADS
    Item

    Google Scholar

  • Liu, J. & Diamond, J. China’s environment in a globalized world. Nature 435, 1179-1186 (2005).

    CASE
    ADS
    Item

    Google Scholar

  • Xu, X., Lu, C., Shi, X. & Gao, S. World water tower: an atmospheric perspective. Geophysics. Res. Lett. 35, 1-5 (2008).

    CASE
    Item

    Google Scholar

  • Cui, X. & Graf, H.-F. Recent changes in land cover on the Tibetan plateau: a review. Clim. Amendment 94, 47-61 (2009).

    Item

    Google Scholar

  • Harris, RB Rangeland degradation on the Qinghai-Tibetan Plateau: a review of the evidence for its extent and causes. J. Aride Environ. 74, 1-12 (2010).

    CASE
    ADS
    Item

    Google Scholar

  • Piao, S. et al. Changes in the growth trend of satellite-derived vegetation in temperate and boreal Eurasia from 1982 to 2006. Glob. Chang. Biol. 17, 3228-3239 (2011).

    ADS
    Item

    Google Scholar

  • Cui, X., Graf, H.-F., Langmann, B., Chen, W. & Huang, R. Climate impacts of anthropogenic land use changes on the Tibetan Plateau. Glob. Planet. Change 54, 33-56 (2006).

    ADS
    Item

    Google Scholar

  • Miehe, G. et al. How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape. Paleogeogr. Paleoclimatol. Paleoecol. 276, 130-147 (2009).

    Item

    Google Scholar

  • Hu, Z. et al. Effects of vegetation control on the efficiency of water use by ecosystems within and between four grassland ecosystems in China. Glob. Chang. Biol. 14, 1609-1619 (2008).

    ADS
    Item

    Google Scholar

  • Wang, Y. & Wesche, K. Vegetation and soil responses to cattle grazing in the grasslands of Central Asia – a review of Chinese literature. Biodiverse. Conserv. (in the press).

  • Wu, G.-LL, Du, G.-ZZ, Liu, Z.-HH & Thirgood, S. Effect of fencing and grazing on a Kobresia– Dominated pasture in the Qinghai-Tibetan plateau. Vegetable soil 319, 115-126 (2009).

    CASE
    Item

    Google Scholar

  • Hafner, S. et al. Effect of grazing on carbon stocks and the distribution of assimilates in a Tibetan mountain pasture revealed by 13Labeling of CO2 pulses. Glob. Chang. Biol. 18, 528-538 (2012).

    ADS
    Item

    Google Scholar

  • Lehnert, LW, Meyer, H., Meyer, N., Reudenbach, C. & Bendix, J. A hyperspectral indicator system for rangeland degradation on the Tibetan plateau: a case study towards spatial monitoring. School. Indic. 39, 54-64 (2014).

    Item

    Google Scholar

  • Lehnert, LW et al. Survey of the vegetation cover of the meadows on the Tibetan plateau based on a multi-scale, multi-sensor and multi-method approach. Remote sensing Approx. 164, 197-207 (2015).

    ADS
    Item

    Google Scholar

  • Dee, DP et al. ERA-Interim reanalysis: Configuration and performance of the data assimilation system. QJR Meteorol. Soc. 137, 553-597 (2011).

    ADS
    Item

    Google Scholar

  • Huffman, GJ et al. TRMM multisatellite precipitation analysis (TMPA): estimates of quasi-global precipitation, multi-year and combined with sensors at fine scales. J. Hydrometeorol. 8, 38-55 (2007).

    ADS
    Item

    Google Scholar

  • Miehe, G. et al. Plant communities of the pastures of central Tibet in the alpine steppe /Kobresia pygmaea ecotone. J. Aride Environ. 75, 711-723 (2011).

    ADS
    Item

    Google Scholar

  • Fang, J., Piao, S., Tang, Z., Peng, C. & Ji, W. Interannual variability of net primary production and precipitation. Sciences 293, 1723 (2001).

    CASE
    Item

    Google Scholar

  • Bai, Y., Han, X., Wu, J., Chen, Z. & Li, L. Ecosystem stability and compensatory effects in the grasslands of Inner Mongolia. Nature 431, 181-184 (2004).

    CASE
    ADS
    Item

    Google Scholar

  • Bai, Y. et al. Positive linear relationship between productivity and diversity: evidence from the Eurasian steppe. J. Appl. School. 44, 1023-1034 (2007).

    Item

    Google Scholar

  • Shi, Y. et al. Field observations of regional-scale temporal variation in net primary production in Tibetan alpine grasslands. Biogeosciences 11, 2003-2016 (2014).

    ADS
    Item

    Google Scholar

  • Davidson, EA & Janssens, IA Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165-173 (2006).

    CASE
    ADS
    Item

    Google Scholar

  • Li, YK, Liao, JJ, Guo, HD, Liu, ZW & Shen, GZ Models and potential drivers of dramatic change in Tibetan lakes, 1972-2010. PLoS One 9, e111890 (2014).

    ADS
    Item

    Google Scholar

  • Cheng, W., Zhao, S., Zhou, C. & Chen, X. Simulation of the decadal distribution of permafrost on the Qinghai-Tibet Plateau (China) over the past 50 years. Permafr. Periglac. To treat. 23, 292-300 (2012).

    Item

    Google Scholar

  • You, QY et al. Comparison of ecosystem characteristics between degraded and intact alpine grasslands of the Qinghai-Tibetan Plateau, China. School. Ing. 71, 133-143 (2014).

    Item

    Google Scholar

  • Zhang, W., An, S., Xu, Z., Cui, J. & Xu, Q. The impact of vegetation and soil on the regulation of runoff in upstream rivers on the plateau East Qinghai-Tibet, China. Catena 87, 182-189 (2011).

    Item

    Google Scholar

  • Zhai, P., Zhang, X., Wan, H. & Pan, X. Trends in total precipitation and frequency of daily extreme precipitation in China. J. Clim. 18, 1096-1108 (2005).

    ADS
    Item

    Google Scholar

  • Piao, S. et al. The impacts of climate change on water resources and agriculture in China. Nature 467, 43-51 (2010).

    CASE
    ADS
    Item

    Google Scholar

  • Babel, W. et al. The degradation of pastures alters the water and carbon cycles of the Tibetan highlands. Biogeosciences 11, 8861-8923 (2014).

    Item

    Google Scholar

  • Fu, R. et al. Short circuit of water vapor and polluted air to the global stratosphere by convective transport on the Tibetan plateau. Proc. Natl. Acad. Sci. 103, 5664-5669 (2006).

    CASE
    ADS
    Item

    Google Scholar

  • Curio, J., Maussion, F. & Scherer, D. A twelve-year high-resolution climatology of atmospheric water transport on the Tibetan plateau. Syst. Dyna. 6, 109-124 (2015).

    ADS
    Item

    Google Scholar

  • Duan, A., Wang, M., Lei, Y. & Cui, Y. Summer precipitation trends in China associated with the sensible heat source of the Tibetan plateau between 1980 and 2008. J. Clim. 26, 261-275 (2012).

    ADS
    Item

    Google Scholar

  • Wang, D. et al. Impact of sensor degradation on the MODIS NDVI time series. Remote sensing Approx. 119, 55-61 (2012).

    ADS
    Item

    Google Scholar

  • Maussion, F. et al. Seasonality and variability of precipitation on the Tibetan plateau as resolved by the reanalysis of upper Asia. J. Clim. 27, 1910-1927 (2014).

    ADS
    Item

    Google Scholar

  • Wang, AH & Zeng, XB Evaluation of multiranalysis products with in situ observations on the Tibetan plateau. J. Geophys. Res. 117, D05102 (2012).

    ADS

    Google Scholar

  • Sheng, L. et al. China Statistical Yearbook. (Chinese statistical press, 2013).

  • Xi, Z. et al. Tibet Statistical Yearbook. (Chinese statistical press, 2013).

  • FAO. Information Note on the Livestock Sector, China. http://www.fao.org/ag/againfo/resources/en/publications/sector_briefs/lsb_CHN.pdf, (Access date: 01/18/2016) (2005).

  • Yu, H., Luedeling, E. & Xu, J. Winter and spring warming causes a delay in spring phenology on the Tibetan plateau. Proc. Natl. Acad. Sci. 107, 22151-22156 (2010).

    CASE
    ADS
    Item

    Google Scholar

  • R Core Team R: A language and an environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (Access date: 01/18/2016) (2013).

  • Natural earth. Free vector and raster map data. http://www.naturalearthdata.com, (Access date: 01/18/2016).


  • Leave a Reply

    Your email address will not be published.