Climate variability

Crop frequency and area response to climate variability may exceed yield response

  • 1

    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global intercomparison of mesh crop models. Proc. Natl Acad. Sci. United States 111, 3268-3273 (2014).

    CASE
    Item

    Google Scholar

  • 2

    Auffhammer, M. & Schlenker, W. Empirical studies on agricultural impacts and adaptation. Energy saving. 46, 555-561 (2014).

    Item

    Google Scholar

  • 3

    Mondal, P. et al. Sensitivity of winter crops to interannual climatic variability in central India. Climate change 126, 61-76 (2014).

    Item

    Google Scholar

  • 4

    Mondal, P., Jain, M., DeFries, RS, Galford, GL & Small, C. Sensitivity of vegetation cover to climate variability: an overview of two Indian agroecoregions. J. Approx. Manage. 148, 21-30 (2015).

    Google Scholar

  • 5

    Seifert, CA & Lobell, DB Dual Crop Adequacy Response to Climate Change in the United States. About. Res. Lett. ten, 024002 (2015).

    Item

    Google Scholar

  • 6

    Waha, K. et al. Adaptation to climate change by the choice of the cropping system and the sowing date in sub-Saharan Africa. Glob. About. Switch 23, 130-143 (2013).

    Item

    Google Scholar

  • 7

    Koide, N. et al. Predicting rice production in the Philippines using seasonal climate forecasts. J. Appl. Meteorol. Climatol. 52, 552-569 (2013).

    Item

    Google Scholar

  • 8

    Naylor, RL, Falcon, WP, Rochberg, D. & Wada, N. Using El Niño / Southern Oscillation climate data to predict rice production in Indonesia. Climate change 50, 255-265 (2001).

    Item

    Google Scholar

  • 9

    Sakamoto, T., Van Nguyen, N., Ohno, H., Ishitsuka, N. & Yokozawa, M. Spatio-temporal distribution of rice phenology and cropping systems in the Mekong Delta with particular reference to flow seasonal water from the Mekong and Bassac rivers. Remote sensing Approx. 100, 1-16 (2006).

    Item

    Google Scholar

  • ten

    Iizumi, T. & Ramankutty, N. How does weather and climate influence the area and intensity of crops? Glob. Food Safety. 4, 46-50 (2015).

    Item

    Google Scholar

  • 11

    Schlenker, W. & Roberts, MJ Nonlinear temperature effects indicate severe damage to US crop yields due to climate change. Proc. Natl Acad. Sci. United States 106, 15594-15598 (2009).

    CASE
    Item

    Google Scholar

  • 12

    Lobell, DB, Schlenker, W. & Costa-Roberts, J. Climate trends and world agricultural production since 1980. Science 333, 616-620 (2011).

    CASE
    Item

    Google Scholar

  • 13

    Urban, DW, Roberts, MJ, Schlenker, W. & Lobell, DB The effects of extremely wet planting conditions on corn and soybean yields. Climate change 130, 247-260 (2015).

    CASE
    Item

    Google Scholar

  • 14

    Ray, DK, Gerber, JS, MacDonald, GK & West, PC Climate variation explains one-third of the global variability in crop yields. Common Nature. 6, 1–9 (2015).

    Item

    Google Scholar

  • 15

    Iizumi, T. et al. Impacts of the El Niño Southern Oscillation on global yields of major crops. Common Nature. 5, 3712 (2014).

    CASE
    Item

    Google Scholar

  • 16

    Gourdji, SM, Sibley, AM & Lobell, DB Global exposure of crops to high critical temperatures during the breeding season: historical trends and future projections. About. Res. Lett. 8, 024041 (2013).

    Item

    Google Scholar

  • 17

    Mendelsohn, R., Nordhaus, WD & Shaw, D. The impact of global warming on agriculture: a Ricardian analysis. A m. Econ. Tower. 104, 753-771 (1994).

    Google Scholar

  • 18

    Ray, DK & Foley, JA Increasing Frequency of Global Harvests: Recent Trends and Future Directions. About. Res. Lett. 8, 044041 (2013).

    Item

    Google Scholar

  • 19

    Municipality Agricultural Data Report (PAM) (Brazilian Institute of Geography and Statistics, 2013); http://www.sidra.ibge.gov.br/bda/acervo/acervo2.asp

  • 20

    Spera, S. et al. The frequency of cultivation, recent expansion and abandonment in Mato Grosso, Brazil, exhibited selective land characteristics. About. Res. Lett. 9, 064010 (2014).

    Item

    Google Scholar

  • 21

    Kummerow, C., Barnes, W., Kozu, T., Shiue, J. & Simpson, J. The Tropical Precipitation Measurement Mission (TRMM) Sensor Package. J. Atmos. Ocean. Technol. 15, 809-817 (1998).

    Item

    Google Scholar

  • 22

    Willmott, C. & Matsuura, K. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950-1999) Version 1.02 (Center for Climatic Research, Univ. Delaware, 2001).

    Google Scholar

  • 23

    de Carvalho, JRP, Assad, ED, de Oliveira, AF & da Silveira Pinto, H. Maximum annual trends in daily precipitation in the Midwest, Southeast and South of Brazil over the past 71 years. Weather. Clim. Extreme 5-6, 7-15 (2014).

    Item

    Google Scholar

  • 24

    Girvetz, EH et al. Applied analysis of climate change: the climate assistant tool. PLoS A 4, e8320 (2009).

    Item

    Google Scholar

  • 25

    Sakurai, G., Iizumi, T. & Yokozawa, M. Variable temporal and spatial effects of climate on corn and soybeans affect yield prediction. Clim. Res. 49, 143-154 (2012).

    Item

    Google Scholar

  • 26

    Gusso, A., Ducati, JR, Veronez, MR, Sommer, V. & da Silveira, LG Jr Monitoring of heat waves and their impacts on the development of summer crops in southern Brazil. Agric. Sci. 5, 353-364 (2014).

    Google Scholar

  • 27

    Richards, P., Pellegrina, H., VanWey, L. & Spera, S. Soybean development: the impact of a decade of agricultural change on urban and economic growth in Mato Grosso, Brazil. PLoS A ten, e0122510 (2015).

    Item

    Google Scholar

  • 28

    Oliveira, LJ, Costa, MH, Soares-Filho, BS & Coe, MT Large-scale expansion of agriculture in the Amazon can be a dead end scenario. About. Res. Lett. 8, 024021 (2013).

    Item

    Google Scholar

  • 29

    New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution surface climate data set over global land areas. Clim. Res. 21, 1–25 (2002).

    Item

    Google Scholar

  • 30

    Kalnay, E. et al. The 40-year NCEP / NCAR reanalysis project. Taurus. A m. Meteorol. Soc. 77, 437-471 (1996).

    Item

    Google Scholar

  • 31

    Cohn, A. et al. Replication data for: frequency of crops and area response to climate variability may exceed yield response (Harvard Dataverse, 2015).

    Google Scholar


  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *